Citation Envoyé par Geo18 Voir le message
Je voudrais bien qu'on m'explique:
En reflex, pendant le temps de la visée et de la mise au point(le plus long), le rayon est diriger vers l'oculaire et pas vers le capteur, certes dangereux pour le photographe.
Avec l'hybride, ce temps long est dirigé vers le capteur.
Je pense qu'avec le reflex, on a plus de chance d’échapper au rayon qui est rarement statique car le capteur n'est découvert que pendant le temps de pose.
Cela est une différence importante
Mais peut être qu'un élément m’échappe?
Explication trouvée sur Youtube (c'est technique mais je peux traduire si c'est nécessaire) :

Explanation and a thought by an applied physicist: The CMOS video sensor in this camera captures voltages from a row of photodetectors at a time (each 1/60s). The photodetecters (operating in photovoltaic mode) transduce a group signal output charge (collected from photons incident on each pixel) during the integration time, which is (1/60)(e) seconds = approx. 0.045 sec. Light from a green laser has a "short" wavelength (~532 nm) and shorter wavelengths are absorbed in the first few microns of the photosensitive region of a CMOS. A Class IIIb laser will emit 4.6 x 10^18 photons per second, so the number of photons incident on a pixel in a second must be LESS THAN (5 x 10^18 photons/s)(0.045 sec)(3.14 x 3.0625 mm^2) / (28.7 mm x 19.1 mm)(8,200,000 pixel/mm^2) = 4.8 x 10^8 photons in the case of direct and constant illumination of the CMOS. The laser source has a diameter of 3.5 mm at a distance of 10m with a divergence angle of 0.17 mrad, so at a distance of 50m from each CMOS pixel, its diameter would be 8.7 mm (area = 3.14 x (4.35 mm)^2 = 59.4 mm^2). The CMOS in this example is constructed such that 70% of the area of each photodiode is optically opaque or reflective (shielded by transistors and metallic bus circuitry) so the max number of photons incident on a pixel in this case is about 2.3 x 10^7 which is not enough to melt copper. 2.3 x 10^7 photons will, however, excite copper electrons just enough to raise the temperature along a single analog->digital converter to disrupt the layer of tantalum nitride that gates (constrains) electromagnetic propagation along copper wires through a column bus, creating a logic non-function scenario (constant "open" voltage signal to MOSFETs along the bus) that causes the "gate noise" we can see as a red horizontal line. This line will be evident in all future images captured by this CMOS. Although the light made a physical change, destroying circuitry, it just as true that that laser "overcommunicated" with a logical circuit such that a passive information receptor became overloaded, killing the component by information density (or entropic brute force!) Most will not fully comprehend the implications of the previous sentence.

La vidéo montrant l'incident et dont est extrait le commentaire du dessus : "https://www.youtube.com/watch?v=J0TgaGePhJA"