The 1tcmdhooks module*

Frank Mittelbach Phelype Oleinik
November 30, 2022

Contents

-

1 Introduction

2 Restrictions and Operational details
2.1 Patching
2.1.1 Timing oo
2.2 Commands that look ahead

w w NN

w

3 Package Author Interface

4 The Implementation

4.1 Executionplan L e
4.2 Variables e
4.3 Variants Lo e
4.4 Patchingordelaying
4.5 Patching commands L e

4.5.1 Patching by expansion and redefinition.

4.5.2 Patching by retokenizationo
4.6 Messages . . .o oL

—_
O UL O 00 OO U

—

V)
o)

Index

1 Introduction

This file implements generic hooks for (arbitrary) commands. In theory every command
\(name) offers now two associated hooks to which code can be added using \AddToHook
or \AddToHookNext.! These are

cmd/(name)/before This hook is executed at the very start of the command execution
after its arguments (if any) are parsed. The hook (code) is wrapped in the command
inside a call to \UseHook{cmd/(name)/before}, so the arguments passed to the
command are not available in the hook (code).

*This file has version v1.0f dated 2021/10/20, © XTEX Project.
n practice this is not supported for all types of commands, see section 2.2 for the restrictions that
apply and what happens if one tries to use this with commands for which this is not supported.

cmd/(name)/after This hook is similar to cmd/(name)/before, but it is executed at the
very end of the command body. This hook is implemented as a reversed hook.

The hooks are not physically present before \begin{document} (i.e., using a com-
mand in the preamble will never execute them) and if nobody has declared any code for
them, then they are not added to the command code ever. For example, if we have the
following definition

\newcommand\foo[2]{Code #1 for #2!}

then executing \foo{A}{B} will simply run Code_A_ for B! as it was always the case.
However, if somebody, somewhere (e.g., in a package) adds

\AddToHook{cmd/foo/before}{<before code>}

then, after \begin{document} the definition of \foo will be:
\renewcommand\foo [2] {\UseHook{cmd/foo/before}Code #1 for #2!}

and similarly \AddToHook{cmd/foo/after}{<after code>} alters the definition to
\renewcommand\foo[2]{Code #1 for #2!\UseHook{cmd/foo/after}}

In other words, the mechanism is similar to what etoolbox offers with \pretocmd
and \apptocmd with the important differences

o that code can be prepended or appended (i.e., added to the hooks) even if the
command itself is not defined, because the defining package has not yet been loaded

e and that by using the hook management interface it is now possible to define how
the code chunks added in these places are ordered, if different packages want to
add code at these points.

2 Restrictions and Operational details

Adding arbitrary material to commands is tricky because most of the time we do not
know what the macro expects as arguments when expanding and TEX doesn’t have a
reliable way to see that, so some guesswork has to be employed.

2.1 Patching

The code here tries to find out if a command was defined with \newcommand or
\DeclareRobustCommand or \NewDocumentCommand, and if so it assumes that the ar-
gument specification of the command is as expected (which is not fail-proof, if someone
redefines the internals of these commands in devious ways, but is a reasonable assump-
tion).

If the command is one of the defined types, the code here does a sandboxed expansion
of the command such that it can be redefined again exactly as before, but with the hook
code added.

If however the command is not a known type (it was defined with \def, for exam-
ple), then the code uses an approach similar to etoolbox’s \patchcmd to retokenize the
command with the hook code in place. This procedure, however, is more likely to fail if
the catcode settings are not the same as the ones at the time of command’s definition,
so not always adding a hook to a command will work.

2.1.1 Timing

When \AddToHook (or its expl3 equivalent) is called with a generic cmd hook, say,
cmd/foo/before, for the first time (that is, no code was added to that same hook be-
fore), in the preamble of a document, it will store a patch instruction for that command
until \begin{document}, and only then all the commands which had hooks added will
be patched in one go. That means that no command in the preamble will have hooks
patched into them.

At \begin{document} all the delayed patches will be executed, and if the command
doesn’t exist the code is still added to the hook, but it will not be executed. After
\begin{document}, when \AddToHook is called with a generic cmd hook the first time,
the command will be immediately patched to include the hook, and if it doesn’t exist or
if it can’t be patched for any reason, an error is thrown; if \AddToHook was already used
in the preamble no new patching is attempted.

This has the consequence that a command defined or redefined after \begin{document}
only uses generic cmd hook code if \AddToHook is called for the first time after the def-
inition is made, or if the command explicitly uses the generic hook in its definition by
declaring it with \NewHookPair adding \UseHook as part of the code.?

2.2 Commands that look ahead

Some commands are defined in different “steps” and they look ahead in the input stream
to find more arguments. If you try to add some code to the cmd/(name)/after hook of
such command, it will not work, and it is not possible to detect that programmatically,
so the user has to know (or find out) which commands can or cannot have hooks attached
to them.

One good example is the \section command. You can add something to the
cmd/section/before hook, but if you try to add something to the cmd/section/after
hook, \section will no longer work. That happens because the \section macro takes
no argument, but instead calls a few internal I#TEX macros to look for the optional and
mandatory arguments. By adding code to the cmd/section/after hook, you get in the
way of that scanning.

3 Package Author Interface

The cmd hooks are, by default, available for all commands that can be patched to add
the hooks. For some commands, however, the very beginning or the very end of the
code is not the best place to put the hooks, for example, if the command looks ahead for
arguments (see section 2.2).

If you are a package author and you want to add the hooks to your own commands
in the proper position you can define the command and manually add the \UseHook
calls inside the command in the proper positions, and manually define the hooks with
\NewHook or \NewReversedHook. When the hooks are explicitly defined, patching is
not attempted so you can make sure your command works properly. For example, an
(admittedly not really useful) command that typesets its contents in a framed box with
width optionally given in parentheses:

\newcommand\fancybox{\@ifnextchar ({\@fancybox}{\@fancybox (5cm)}}
\def\@fancybox (#1)#2{\fbox{\parbox{#1}{#2}}}

2We might change this behavior in the main document slightly after gaining some usage experience.

If you try that definition, then add some code after it with
\AddToHook{cmd/fancybox/after}{<code>}

and then use the \fancybox command you will see that it will be completely broken,
because the hook will get executed in the middle of parsing for optional (...) argument.

If, on the other hand, you want to add hooks to your command you can do something
like:

\newcommand\fancybox{\@ifnextchar ({\@fancybox}{\@fancybox(5cm)}}
\def\@fancybox (#1)#2{\fbox{¥%
\UseHook{cmd/fancybox/before},
\parbox{#1}{#2}/,
\UseHook{cmd/fancybox/after}}}
\NewHook{cmd/fancybox/before}
\NewReversedHook{cmd/fancybox/after}

then the hooks will be executed where they should and no patching will be attempted. It is
important that the hooks are declared with \NewHook or \NewReversedHook, otherwise
the command hook code will try to patch the command. Note also that the call to
\UseHook{cmd/fancybox/before} does not need to be in the definition of \fancybox,
but anywhere it makes sense to insert it (in this case in the internal \@fancybox).

Alternatively, if for whatever reason your command does not support the generic
hooks provided here, you can disable a hook with \DisableHook?, so that when someone
tries to add code to it they will get an error. Or if you don’t want the error, you can
simply declare the hook with \NewHook and never use it.

The above approach is useful for really complex commands where for one or the
other reason the hooks can’t be placed at the very beginning and end of the command
body and some hand-crafting is needed. However, in the example above the real (and
in fact only) issue is the cascading argument parsing in the style developed long ago in
ETEX 2.09. Thus, a much simpler solution for this case is to replace it with the modern
\NewDocumentCommand syntax and define the command as follows:

\DeclareDocumentCommand\fancybox{D () {5cm}m}{\fbox{\parbox{#1}{#2}}}

If you do that then both hooks automatically work and are patched into the right places.

4 The Implementation

4.1 Execution plan

To add before and after hooks to a command we will need to peek into the definition
of a command, which is always a tricky thing to do. Some cases are easy because we
know how the command was defined, so we can assume how its (parameter text) looks
like (for example a command defined with \newcommand may have an optional argument
followed by a run of mandatory arguments), so we can just expand that command and
make it grab #1, #2, etc. as arguments and define it all back with the hooks added.
Life’s usually not that easy, so with some commands we can’t do that (a #1 might
as well be #12112 instead of the expected #g1;2, for example) so we need to resort to

3Please use \DisableHook if at all, only on hooks that you “own”, i.e., for commands that your package
or class defines and not second guess whether or not hooks of other packages should get disabled!

\g_hook_patch_action_list_tl

\1__hook_patch_num_args_int

\1__hook_patch_prefixes_tl
\1__hook_param_text_tl
\1__hook_replace_text_tl

\c__hook_hash_t1l

“patching” the command: read its \meaning, and tokenize it again with \scantokens
and hope for the best.
So the overall plan is:

1. Check if a command is of a known type (that is, defined with \newcommand®,
\DeclareRobustCommand, or \New(Expandable)DocumentCommand), and if is, take
appropriate action.

2. If the command is not a known type, we’ll check if the command can be patched.
Two things will prevent a command from being patched: if it was defined in a
nonstandard catcode setting, or if it is an internal expl3 command with __{module)
in its name, in which case we refuse to patch.

3. If the command was defined in nonstandard catcode settings, we will try a few
standard ones to try our best to carry out the pathing. If this doesn’t help either,
the code will give up and throw an error.

1 (@@=hook)

> (x2ekernel | latexrelease)

; \ExplSyntax0On
s (latexrelease) \NewModuleRelease{2021/06/01}{1tcmdhooks}
s (latexrelease) {The~hook~management~system~for~commands}

4.2 Variables

Pairs of \if<cmd>. .\patch<cmd> to be used with \robust@command@act when looking
for a known patching rule. This token list is exposed because we see some future appli-
cations (with very specialized packages, such as etoolbox that may want to extend the
pairs processed. It is not meant for general use which is why it is not documented in the
interface documentation above.

6 \tl_new:N \g_hook_patch_action_list_tl

(End definition for \g_hook_patch_action_list_tl.)

The number of arguments in a macro being patched.
7 \int_new:N \1__hook_patch_num_args_int
(End definition for \1__hook_patch_num_args_int.)

The prefixes and parameters of the definition for the macro being patched.

¢ \tl_new:N \1__hook_patch_prefixes_tl
o \tl_new:N \1__hook_param_text_tl
10 \tl_new:N \1__hook_replace_text_tl

(End definition for \1__hook_patch_prefixes_t1l, \1__hook_param_text_tl, and \1__hook_replace_-
text_tl.)

A constant token list that contains two parameter tokens.
11 \tl_const:Nn \c__hook_hash_t1 { # # }

(End definition for \c__hook_hash_t1.)

4It’s not always possible to reliably detect this case because a command defined with no optional
argument is indistinguishable from a \defed command.

__hook_exp_not:NN Two temporary macros that change depending on the macro being patched.
__hook_def_cmd:w 12 \cs_new_eq:NN __hook_exp_not:NN ?
13 \cs_new_eq:NN __hook_def_cmd:w ?

(End definition for __hook_exp_not:NN and __hook_def_cmd:w.)

\q__hook_recursion_tail Internal quarks for recursion: they can’t appear in any macro being patched.
\q__hook_recursion_stop , \quark_new:N \g__hook_recursion_tail

15 \quark_new:N \g__hook_recursion_stop

(End definition for \q__hook_recursion_tail and \q__hook_recursion_stop.)

\g_hook _delayed patches prop A list containing the patches delayed to \begin{document}, so that patching is not
attempted twice.

16 \prop_new:N \g__hook_delayed_patches_prop

(End definition for \g__hook_delayed_patches_prop.)

__hook_patch_debug:x A helper for patching debug info.
17 \cs_new_protected:Npn __hook_patch_debug:x #1
18 { __hook_debug:n { \iow_term:x { [lthooks]~#1 } } }

(End definition for __hook_patch_debug:x.)

4.3 Variants

\tl_rescan:nV expl3 function variants used throughout the code.

10 \cs_generate_variant:Nn \tl_rescan:nn { nV }

(End definition for \tl_rescan:nV.)

4.4 Patching or delaying
Before \begin{document} all patching is delayed.

__hook_try_put_cmd_hook:n This function is called from within \AddToHook, when code is first added to a generic cmd

__hook_try_put_cmd_hook:w hook. If it is called within in the preamble, it delays the action until \begin{document};
otherwise it tries to update the hook.

o (latexrelease)\IncludeInRelease{2021/11/15}{__hook_try_put_cmd_hook:n}}

21 (latexrelease) {Standardise~generic~hook~names}

2> \cs_new_protected:Npn __hook_try_put_cmd_hook:n #1

23 { __hook_try_put_cmd_hook:w #1 / / / \s__hook_mark {#1} }

2 \cs_new_protected:Npn __hook_try_put_cmd_hook:w

N

25 #1 / #2 / #3 / #4 \s__hook_mark #5

26 {

27 __hook_debug:n { \iow_term:n { ->~Adding~cmd~hook~to~’#2’~(#3): } }
28 \exp_args:Nc __hook_patch_cmd_or_delay:Nnn {#2} {#2} {#3}

0}

50 (latexrelease) \EndIncludeInRelease

latexrelease) \IncludeInRelease{2021/06/01}{__hook_try_put_cmd_hook:n}},
latexrelease {Standardise~generic~hook~names}

s (

32 <

33 (latexrelease) \cs_new_protected:Npn __hook_try_put_cmd_hook:n #1
(latexrelease) { __hook_try_put_cmd_hook:w #1 / / / \s__hook_mark {#1} }
(latexrelease) \cs_new_protected:Npn __hook_try_put_cmd_hook:w

3 (latexrelease #1 / #2 / #3 / #4 \s__hook_mark #5

57 (latexrelease) {
(
(
(
(
(
(

)
)
)
)
)
)
)
latexrelease) __hook_debug:n { \iow_term:n { ->~Adding~cmd~hook~to~’#2’~(#3): } }
)
)
)
)
)
)

34

35

\str_case:nnTF {#3}
{ { before } { } { after } { } }
{ \exp_args:Nc __hook_patch_cmd_or_delay:Nnn {#2} {#2} {#3} }
{ \msg_error:nnnn { hooks } { wrong-cmd-hook } {#2} {#3} }

latexrelease
latexrelease
latexrelease
latexrelease
latexrelease) }
4 (latexrelease) \EndIncludeInRelease

39
40
41
42

43

(End definition for __hook_try_put_cmd_hook:n and __hook_try_put_cmd_hook:w.)

__hook patch_cnd or delay:lin In the preamble, __hook_patch_cmd_or_delay:Nnn just adds the patch instruction to
_ hook cnd begindocunent code: & property list to be executed later.
s \cs_new_protected:Npn __hook_patch_cmd_or_delay:Nnn #1 #2 #3

w6 o

47 __hook_debug:n { \iow_term:n { ->~Add~generic~cmd~hook~for~#2~(#3). } }
a8 __hook_debug:n

49 { \iow_term:n { !~In~the~preamble:~delaying. } }

50 \prop_gput:Nnn \g__hook_delayed_patches_prop { #2 / #3 }

51 { __hook_cmd_try_patch:nn {#2} {#3} }

s>}

The delayed patches are added to a property list to prevent duplication, and the code
stored in the property list for each key is executed. The function __hook_patch_cmd_-
or_delay:Nnn is also redefined to be __hook_patch_command:Nnn so that no further
delaying is attempted.

53 \cs_new_protected:Npn __hook_cmd_begindocument_code:

54 {

55 \cs_gset_eq:NN __hook_patch_cmd_or_delay:Nnn __hook_patch_command:Nnn
56 \prop_map_function:NN \g__hook_delayed_patches_prop { \use_ii:nn }

57 \prop_gclear:N \g__hook_delayed_patches_prop

58 \cs_undefine:N __hook_cmd_begindocument_code:

9}

e \g@addto@macro \@kernel@after@begindocument
61 { __hook_cmd_begindocument_code: }

(End definition for __hook_patch_cmd_or_delay:Nnn and __hook_cmd_begindocument_code:.)

__hook_cmd_try_patch:nn At \begin{document} tries patching the command if the hook was not manually created
in the meantime. If the document does not exist, no error is raised here as it may hook
into a package that wasn’t loaded. Hooks added to commands in the document body
still raise an error if the command is not defined.

6> \cs_new_protected:Npn __hook_cmd_try_patch:nn #1 #2

63 {

64 __hook_debug:n

65 { \iow_term:x { ->~\string\begin{document}~try~cmd / #1 / #2. } }
66 __hook_if_declared:nTF { cmd / #1 / #2 }

67 {

__hook_patch_command:Nnn
__hook_patch_check:NNnn
__hook_if_public_command:NTF
__hook_if_public_command:w

68 __hook_debug:n

69 { \iow_term:n { .->~Giving~up:~hook~already~created. } }
70 }

71 {

72 \cs_if_exist:cT {#1}

73 { \exp_args:Nc __hook_patch_command:Nnn {#1} {#1} {#2} }
74 }

75 }

(End definition for __hook_cmd_try_patch:nn.)

4.5 Patching commands

__hook_patch_command :Nnn will do some sanity checks on the argument to detect if it is
possible to add hooks to the command, and raises an error otherwise. If the command can
contain hooks, then it uses \robust@command®@act to find out what type is the command,
and patch it accordingly.

76 \cs_new_protected:Npn __hook_patch_command:Nnn #1 #2 #3

77 {

78 __hook_patch_debug:x { analyzing~’\token_to_str:N #1’ }

79 __hook_patch_debug:x { \token_to_str:N #1 = \token_to_meaning:N #1 }
80 __hook_patch_check:NNnn \cs_if_exist:NTF #1 { undef }

81 {

82 __hook_patch_debug:x { ++~control~sequence~is~defined }

83 __hook_patch_check:NNnn \token_if_macro:NTF #1 { macro }

84 {

85 __hook_patch_debug:x { ++~control~sequence~is~a~macro }

86 __hook_patch_check:NNnn __hook_if_public_command:NTF #1 { expl3 }
87 {

88 __hook_patch_debug:x { ++~macro~is~not~private }

89 \robust@command@act

90 \g_hook_patch_action_list_t1l #1

01 __hook_retokenize_patch:Nnn { #1 {#2} {#3} }

92 }

93 }

94 }

95 ¥

And here’s the auxiliary used above:
o \cs_new_protected:Npn __hook_patch_check:NNnn #1 #2 #3 #4

97 {

98 #1 #2 {#4}

99 {

100 \msg_error:nnxx { hooks } { cant-patch }
101 { \token_to_str:N #2 } {#3}

102 ¥

103 }

and a conditional __hook_if_public_command:N to check if a command has __ in its
name (no other checking is performed). Primitives with :D in their name could be
included here, but they are already discarded in the \token_if_macro:NTF test above.

104 \use:x
105 {

106 \prg_new_protected_conditional:Npnn

\g_hook_patch_action_list_tl

__hook patch DeclareRobustCommand: inn

107 \exp_not:N __hook_if_public_command:N ##1 { TF }

108 {

109 \exp_not:N \exp_last_unbraced:Nf

110 \exp_not:N __hook_if_public_command:w
111 { \exp_not:N \cs_to_str:N ##1 }

112 \tl_to_str:n { _ _ } \s__hook_mark

113 T

114 }
115 \exp_last_unbraced:NNNNo
116 \cs_new_protected:Npn __hook_if_public_command:w

117 #1 \tl_to_str:n { _ _ } #2 \s__hook_mark
118 {

119 \tl_if_empty:nTF {#2}

120 { \prg_return_true: }

121 { \prg_return_false: }

122 }

(End definition for __hook_patch_command:Nnn and others.)

4.5.1 Patching by expansion and redefinition

This is the list of known command types and the function that patches the command
hooks into them. The conditionals are taken from \ShowCommand, \NewCommandCopy and
__kernel_cmd_if_xparse:NTF defined in 1tcmd.

13 \tl_gset:Nn \g_hook_patch_action_list_tl

124 {
125 { \@if@DeclareRobustCommand __hook_patch_DeclareRobustCommand:Nnn }
126 { \@if@newcommand __hook_patch_newcommand:Nnn }

127 { __kernel_cmd_if_xparse:NTF __hook_cmd_patch_xparse:Nnn }
128 }

(End definition for \g_hook_patch_action_list_t1.)

At this point we know that the commands can be patched by expanding then redefining.
These are the cases of commands defined with \newcommand with an optional argument
or with \DeclareRobustCommand.

With __hook_patch_DeclareRobustCommand:Nnn we check if the command has an
optional argument (with a test counter-intuitively called \@if@newcommand; also make
sure the command doesn’t take args by calling \robust@command@chk@safe). If so,
we pass the patching action to __hook_patch_newcommand:Nnn, otherwise we call the
patching engine __hook_patch_expand_redefine:NNnn with a \c_false_bool to in-
dicate that there is no optional argument.

120 \cs_new_protected:Npn __hook_patch_DeclareRobustCommand:Nnn #1
130 {

131 \exp_args:Nc __hook_patch_DeclareRobustCommand_aux:Nnn

132 { \cs_to_str:N #1 ~ }

133 }

134 \cs_new_protected:Npn __hook_patch_DeclareRobustCommand_aux:Nnn #1
135 {

136 \robust@command@chk@safe #1

137 { \@if@newcommand #1 }

138 { \use_ii:nn }

139 { __hook_patch_newcommand:Nnn }

__hook_patch_newcommand : Nnn

__hook_cmd_patch_xparse:Nnn

__hook_patch_expand redefine:Nlnn
__hook redefine with hooks:Nnnn

__hook_make_pref ixes:w

140 { __hook_patch_expand_redefine:NNnn \c_false_bool }
141 #1
142 }

(End definition for __hook_patch_DeclareRobustCommand:Nnn.)

If the command was defined with \newcommand and an optional argument, call the patch-
ing engine with a \c_true_bool to flag the presence of an optional argument, and with
\\command to patch the actual code for \command.

123 \cs_new_protected:Npn __hook_patch_newcommand:Nnn #1

144 {

145 \exp_args:NNc __hook_patch_expand_redefine:NNnn \c_true_bool
146 { \c_backslash_str \cs_to_str:N #1 }

147 }

(End definition for __hook_patch_newcommand:Nnn.)

And for commands defined by the xparse commands use this for patching:

1s \cs_new_protected:Npn __hook_cmd_patch_xparse:Nnn #1

149 {

150 \exp_args:NNc __hook_patch_expand_redefine:NNnn \c_false_bool
151 { \cs_to_str:N #1 ~ code }

152 }

(End definition for __hook_cmd_patch_xparse:Nnn.)

Now the real action begins. Here we have in #1 a boolean indicating if the command
has a leading [...]-delimited argument, in #2 the command control sequence, in #3 the
name of the command (note that #1 # \csname#2\endcsname at this point!), and in #4
the hook position, either before or after.

Patching with expansion+redefinition is trickier than it looks like at first glance.
Suppose the simple definition:

\def\foo#1{#1##2}
When defined, its (replacement text) will be a token list containing:
out__param 1, mac__param #, character 2

Then, after expanding \foo{##1} (here ## denotes a single #5) we end up with a
token list with out param 1 replaced:

mac__param #, character 1, mac_param #, character 2
that is, the definition would be:
\def\foo#1{#1#2}

which obviously fails, because the original input in the definition was ## but TEX reduced
that to a single parameter token #¢ when carrying out the definition. That leaves no room
for a clever solution with (say) \unexpanded, because anything that would double the
second #¢, would also (incorrectly) double the first, so there’s not much to do other than
a manual solution.

There are three cases we can distinguish to make things hopefully faster on simpler
cases:

10

1. a macro with no parameters;
2. a macro with no parameter tokens in its definition;
3. a macro with parameters and parameter tokens.

The first case is trivial: if the macro has no parameters, we can just use \unexpanded
around it, and if there is a parameter token in it, it is handled correctly (the macro can
be treated as a t1 variable).

The second case requires looking at the (replacement text) of the macro to see if it
has a parameter token in there. If it does not, then there is no worry, and the macro can
be redefined normally (without \unexpanded).

The third case, as usual, is the devious one. Here we’ll have to loop through the
definition token by token, and double every parameter token, so that this case can be
handled like the previous one.

153 \cs_new_protected:Npn __hook_patch_expand_redefine:NNnn #1 #2 #3 #4

154 {

155 __hook_patch_debug:x { ++~command~can~be~patched~without~rescanning }
We'll start by counting the number of arguments in the command by counting the number
of characters in the \cs_argument_spec:N of the macro, divided by two, and subtracting
one if the command has an optional argument (that is, an extra [] in its (parameter text)).

156 \int_set:Nn \1__hook_patch_num_args_int

157 {

158 \exp_args:Nf \str_count:n { \cs_argument_spec:N #2 } / 2
159 \bool_if:NT #1 { -1 }

160 }

Now build two token lists:

\1__hook_param_text_t1l will contain the {parameter text) to be used when redefining
the macro. It should be identical to the (parameter text) used when originally
defining that macro.

\1__hook_replace_text_tl will contain braced pairs of \c__hook_hash_t1l(num) to
feed to the macro when expanded. This token list as well as the previous will have
the first item surrounded by [...] in the case of an optional argument.

The use of \c__hook_hash_t1 here is to differentiate actual parameters in the macro
from parameter tokens in the original definition of the macro. Later on, \c__hook_hash_-
t1 is either replaced by actual parameter tokens, or expanded into them.

161 \int_compare:nNnTF { \1__hook_patch_num_args_int } > { \c_zero_int }

162 {

We'll first check if the command has any parameter token in its definition (feeding it
empty arguments), and set __hook_exp_not:n accordingly. __hook_exp_not:n will
be used later to either leave \c__hook_hash_t1 or expand it, and also to remember the
result of __hook_if_has_hash:nTF to avoid testing twice (the test can be rather slow).
163 \tl_set:Nx \1__hook_tmpa_tl { \bool if:NTF #1 { [1 X} { { } } }

164 \int_step_inline:nnn { 2 } { \1__hook_patch_num_args_int }

165 { \tl_put_right:Nn \1__hook_tmpa_tl { { } } }

166 \exp_args:NNo \exp_args:No __hook_if_has_hash:nTF

167 { \exp_after:wN #2 \1__hook_tmpa_tl }

168 { \cs_set_eq:NN __hook_exp_not:n \exp_not:n }

169 { \cs_set_eq:NN __hook_exp_not:n \use:n }

11

170 \cs_set_protected:Npn __hook_tmp:w ##1 ##2

171 {

172 ##1 \1__hook_param_text_tl { \use:n ##2 }

173 ##1 \1__hook_replace_text_tl { __hook_exp_not:n {##2} }
174 }

Here we’ll conditionally add [...] around the first parameter:

175 \bool_if:NTF #1

176 { __hook_tmp:w \tl_set:Nx { [\c__hook_hash_tl 1

1313}
177 { __hook_tmp:w \tl_set:Nx { { \c__hook_hash_tl1 1 } } }
Then, for every parameter from the second, just add it normally:
178 \int_step_inline:nnn { 2 } { \1__hook_patch_num_args_int }
179 { __hook_tmp:w \tl_put_right:Nx { { \c__hook_hash_tl ##1 } } }
Now, if the command has any parameter token in its definition (then __hook_exp_not:n
is \exp_not:n), call __hook_double_hashes:n to double them, and replace every \c__-
hook_hash_t1 by #:

180 \tl_set:Nx \1__hook_replace_text_tl

181 { \exp_not:N #2 \exp_not:V \1__hook_replace_text_tl }

182 \tl_set:Nx \1__hook_replace_text_tl

183 {

184 \token_if_eq_meaning:NNTF __hook_exp_not:n \exp_not:n
185 { \exp_args:NNV \exp_args:No __hook_double_hashes:n }
186 { \exp_args:NV \exp_not:o }

187 \1__hook_replace_text_tl

188 }

And now, set a few auxiliaries for the case that the macro has parameters, so it won'’t be
passed through \unexpanded (twice):

189 \cs_set_eq:NN __hook_def_cmd:w \tex_gdef:D

190 \cs_set_eq:NN __hook_exp_not:NN \prg_do_nothing:
191 ¥

192 {

In the case the macro has no parameters, we’ll treat it as a token list and things are much
simpler (expansion control looks a bit complicated, but it’s just a pair of \exp_not:N
preventing another \exp_not:n from expanding):

193 \tl_clear:N \1__hook_param_text_tl

194 \tl_set_eq:NN \1__hook_replace_text_tl #2

195 \cs_set_eq:NN __hook_def_cmd:w \tex_xdef:D

196 \cs_set:Npn __hook_exp_not:NN ##1 { \exp_not:N ##1 \exp_not:N }
197 }

Before redefining, we need to also get the prefixes used when defining the command.
Here we ensure that the \escapechar is printable, otherwise a macro defined with pre-
fixes \protected \long will have it \meaning printed as protectedlong, making life
unnecessarily complicated. Here the \escapechar is changed to /, then we loop between
pairs of /.../ extracting the prefixes.

198 \group_begin:

199 \int_set:Nn \tex_escapechar:D { ‘\/ }

200 \use:x

201 {

202 \group_end:

203 \tl_set:Nx \exp_not:N \1__hook_patch_prefixes_tl

204 { \exp_not:N __hook_make_prefixes:w \cs_prefix_spec:N #2 / / }

12

__hook_if_has_hash_p:n
__hook_if_has_hash:nTF
__hook_if_has_hash:w
__hook_if_has_hash_check:w

205 }

Finally, call __hook_redefine_with_hooks:Nnnn with the macro being redefined in #1,
then \UseHook{cmd/<name>/before} in #2 or \UseHook{cmd/<name>/after} in #3 (one
is always empty), and in #4 the (replacement text) of the macro.

206 \use:x

207 {

208 __hook_redefine_with_hooks:Nnnn \exp_not:N #2

200 \str_if_eq:nnTF {#4} { after }

210 { \use_ii_i:nn }

211 { \use:nn }

212 { { __hook_exp_not:NN \exp_not:N \UseHook { cmd / #3 / #4 } } }
213 { { } }

214 { __hook_exp_not:NN \exp_not:V \1__hook_replace_text_tl }
215 }

216 }

Now that all the needed tools are ready, without further ado we’ll redefine the
command. The definition uses the prefixes gathered in \1__hook_patch_prefixes_t1l,
a primitive __hook_def_cmd:w (which is \tex_gdef :D or \tex_xdef :D) to avoid adding
extra prefixes, and the (parameter text) from \1__hook_param_text_t1.

Then finally, in the body of the definition, we insert #2, which is cmd/#1/before or
empty, #4 which is the (replacement text), and #3 which is cmd/#1/after or empty.

217 \cs_new_protected:Npn __hook_redefine_with_hooks:Nnnn #1 #2 #3 #4
a8 {

219 \1__hook_patch_prefixes_tl

220 \exp_after:wN __hook_def_cmd:w

221 \exp_after:wN #1 \1__hook_param_text_tl

222 {#2 #4 #3}

223 }

Here’s the auxiliary that makes the prefix control sequences for the redefinition.
Each item has to be \t1l_trim_spaces:n’d because the last item (and not any other)
has a trailing space.

22 \cs_new:Npn __hook_make_prefixes:w / #1 /

225 {

226 \tl_if_empty:nF {#1}

227 {

228 \exp_not:c { tex_ \tl_trim_spaces:n {#1} :D }
229 __hook_make_prefixes:w /

230 }

231 }

(End definition for __hook_patch_expand_redefine:NNnn, __hook_redefine_with_hooks:Nnnn, and
__hook_make_prefixes: w.)

Here are some auxiliaries for the contraption above.

__hook_if_has_hash:nTF searches the token list #1 for a catcode 6 token, and if any is
found, it returns true, and false otherwise. The searching doesn’t care about preserving
groups or spaces: we can ignore those safely (braces are removed) so that searching is as
fast as possible.

232 \prg_new_conditional:Npnn __hook_if_has_hash:n #1 { TF }

233 { __hook_if_has_hash:w #1 ## \s__hook_mark }

232 \cs_new:Npn __hook_if_has_hash:w #1

13

236 \tl_if_single_token:nTF {#1}

237 {

238 \token_if_eq_catcode:NNTF ## #1
239 { __hook_if_has_hash_check:w }
240 { __hook_if_has_hash:w }

241 T

242 { __hook_if_has_hash:w #1 }

243 }

224 \cs_new:Npn __hook_if_has_hash_check:w #1 \s__hook_mark
25 { \tl_if_empty:nTF {#1} { \prg_return_false: } { \prg_return_true: } }

(End definition for __hook_if_has_hash:nTF, __hook_if_has_hash:w, and __hook_if_has_hash_-
check:w.)

__hook_double_hashes:n __hook_double_hashes:n loops through the token list #1 and duplicates any catcode 6
__hook_double_hashes:w token, and expands tokens \ifx-equal to \c__hook_hash_t1, and leaves all other tokens
__hook double hashes output:ll \notexpanded with \exp_not:N. Unfortunately pairs of explicit catcode 1 and catcode 2
__hook_double_hashes_stop:w character tokens are normalised to {; and }; because it’s not feasible to expandably
__hook_double hashes group:n detect the character code (maybe it could be done using something along the lines of
_ ook double hashes space:w https://tex.stackexchange.com/a/527538, but it’s far too much work for close to
zero benefit).
__hook_double_hashes:w is the tail-recursive loop macro, that tests which of the
three types of item is in the head of the token list.
26 \cs_new:Npn __hook_double_hashes:n #1
27 { __hook_double_hashes:w #1 \q__hook_recursion_tail \q__hook_recursion_stop }
25 \cs_new:Npn __hook_double_hashes:w #1 \q__hook_recursion_stop

249 {

250 \tl_if_head_is_N_type:nTF {#1}

251 { __hook_double_hashes_output:N }

252 {

253 \tl_if_head_is_group:nTF {#1}

254 { __hook_double_hashes_group:n }
255 { __hook_double_hashes_space:w }
256 }

257 #1 \q__hook_recursion_stop

258 }

__hook_double_hashes_output:N checks for the end of the token list, then checks
if the token is \c__hook_hash_t1, and if so just leaves it.

250 \cs_new:Npn __hook_double_hashes_output:N #1

260 {

261 \if _meaning:w \q__hook_recursion_tail #1
262 __hook_double_hashes_stop:w

263 \fi:

264 \if _meaning:w \c__hook_hash_tl #1

(this \use_i:nnnn uses \fi: and consumes \use:n, the whole \if_catcode:w block,
and the \exp_not:N, leaving just #1 which is \c__hook_hash_t1.)

265 \use_i:nnnn
266 \fi:

267 \use n

268 {

14

https://tex.stackexchange.com/a/527538

__hook_retokenize_patch:Nnn

If #1 is not \c__hook_hash_t1, then check if its catcode is 6, and if so, leave it doubled
in \exp_not:n and consume the following \exp_not:N #1.

260 \if_catcode:w ## \exp_not:N #1
270 \exp_after:wN \use_ii:nnnn
271 \fi:

272 \use_none:n

273 { \exp_not:n { #1 #1 } }

274 }

If both previous tests returned false, then leave the token unexpanded and resume the
loop.

275 \exp_not:N #1
276 __hook_double_hashes:w
277 T

27 \cs_new:Npn __hook_double_hashes_stop:w #1 \q__hook_recursion_stop { \fi: }
Dealing with spaces and grouped tokens is trivial:

279 \cs_new:Npn __hook_double_hashes_group:n #1

20 { { __hook_double_hashes:n {#1} } __hook_double_hashes:w }

51 \exp_last_unbraced:NNo

22 \cs_new:Npn __hook_double_hashes_space:w \c_space_tl

23 { ~ __hook_double_hashes:w }

(End definition for __hook_double_hashes:n and others.)

4.5.2 Patching by retokenization

At this point we’ve drained the possibilities of patching a command by expansion-and-
redefinition, so we have to resort to patching by retokenizing the command. Patching
by retokenization is done by getting the \meaning of the command, doing the neces-
sary manipulations on the generated string, and the retokenizing that again by using
\scantokens.

Patching by retokenization is definitely a riskier business, because it relies that the
tokens printed by \meaning produce the exact same tokens as the ones in the original
definition. That is, the catcode régime must be exactly(ish) the same, and there is no
way of telling except by trial and error.

This is the macro that will control the whole process. First we’ll try out one final, rather
trivial case, of a command with no arguments; that is, a token list. This case can be
patched with the expand-and-redefine routine but it has to be the very last case tested for,
because most (all?) robust commands start with a top-level macro with no arguments,
so testing this first would short-circuit \robust@command®act and the top-level macros
would be incorrectly patched. In that case, we just check if the \cs_argument_spec:N
is empty, and call __hook_patch_expand_redefine:NNnn.
23 \cs_new_protected:Npn __hook_retokenize_patch:Nnn #1 #2 #3
285 {
286 __hook_patch_debug:x { ..~command~can~only~be~patched~by~rescanning }
287 \str_if_eq:eeTF { \cs_argument_spec:N #1 } { }
288 { __hook_patch_expand_redefine:NNnn \c_false_bool #1 {#2} {#3} }
289 {

Otherwise, we start the actual patching by retokenization job. The code calls
__hook_try_patch_with_catcodes:Nnnnw with a different catcode setting:

15

e The current catcode setting;

e Switching the catcode of @;

e Switching the expl3 syntax on or off;
« Both of the above.

If patching succeeds, __hook_try_patch_with_catcodes:Nnnnw has the side-effect
of patching the macro #1 (which may be an internal from the command whose name is #2).

200 \tl_set:Nx \1__hook_tmpa_tl

201 {

202 \int_compare:nNnTF { \char_value_catcode:n {‘\@ } } = { 12 }
203 { \exp_not:N \makeatletter } { \exp_not:N \makeatother }
294 }

205 \tl_set:Nx \1__hook_tmpb_tl

296 {

207 \bool_if:NTF \1__kernel_expl_bool

208 { \ExplSyntax0ff } { \ExplSyntaxOn }

299 ¥

300 \use X

301 {

302 \exp_not:N __hook_try_patch_with_catcodes:Nnnnw
303 \exp_not:n { #1 {#2} {#3} }

304 { \prg_do_nothing: }

305 { \exp_not:V \1__hook_tmpa_tl } % @

306 { \exp_not:V \1__hook_tmpb_t1l } % _:

307 {

308 \exp_not:V \1__hook_tmpa_tl % @

300 \exp_not:V \1__hook_tmpb_tl % _

310 }

311 }

312 \gq_recursion_tail \g_recursion_stop

If no catcode setting succeeds, give up and raise an error. The command isn’t
changed in any way in that case.

313 {
314 \msg_error:nnxx { hooks } { cant-patch }
315 { \c_backslash_str #2 } { retok }

(End definition for __hook_retokenize_patch:Nnn.)

_ hook try patch with catcodes:lnmnw This function is a simple wrapper around __hook_cmd_if_scanable:NnTF and __hook_-
patch_retokenize:Nnnn if the former returns (true), plus some debug messages.

;19 \cs_new_protected:Npn __hook_try_patch_with_catcodes:Nnnnw #1 #2 #3 #4

320 {

321 \quark_if_recursion_tail_stop_do:nn {#4} { \use:n }

322 __hook_patch_debug:x { ++~trying~to~patch~by~retokenization }

323 __hook_cmd_if_scanable:NnTF {#1} {#4}

324 {

325 __hook_patch_debug:x { ++-macro~can-~be~retokenized~cleanly }
326 __hook_patch_debug:x { ==~retokenizing~macro~now }

16

\kerneltmpDoNotUse

__hook patch required catcodes:

327 __hook_patch_retokenize:Nnnn #1 {#2} {#3} {#4}
328 \use_i_delimit_by_q_recursion_stop:nw \use_none:n

329 }

330 {

331 __hook_patch_debug:x { --~macro~cannot~be~retokenized~cleanly }
332 __hook_try_patch_with_catcodes:Nnnnw #1 {#2} {#3}

333 }

334 }

(End definition for __hook_try_patch_with_catcodes:Nnnnw.)

This is an oddity required to be safe (as safe as reasonably possible) when patching the
command. The entirety of

(prefizes) \def (cs) (parameter text) {(replacement text)}

will go through \scantokens. The (parameter text) and (replacement text) are what we
are trying to retokenize, so not much worry there. The other items, however, should “just
work”, so some care is needed to not use too fancy catcode settings. Therefore we can’t
use an expl3-named macro for (cs), nor the expl3 versions of \def or the (prefizes). That
is why the definitions that will eventually go into \scantokens will use the oddly (but
hopefully clearly)-named \kerneltmpDoNotUse:

335 \cs_new_eq:NN \kerneltmpDoNotUse !

PhO: Maybe this can be avoided by running the (parameter text) and the (replacement
text) separately through \scantokens and then putting everything together at the end.

(End definition for \kerneltmpDoNotUse.)

Here are the catcode settings that are mandatory when retokenizing commands. These
are the minimum necessary settings to perform the definitions: they identify control
sequences, which must be escaped with \g, delimit the definition with {; and }2, and
mark parameters with #¢. Everything else may be changed, but not these.

336 \cs_new_protected:Npn __hook_patch_required_catcodes:

337 {

338 \char_set_catcode_escape:N \\

339 \char_set_catcode_group_begin:N \{

340 \char_set_catcode_group_end:N \}

341 \char_set_catcode_parameter:N \#

342 % \int_set:Nn \tex_endlinechar:D { -1 }
343 % \int_set:Nn \tex_newlinechar:D { -1 }
344 }

PhO: etoolbox sets the \endlinechar and \newlinechar when patching, but as far as
I tested these didn’t make much of a difference, so I left them out for now. Maybe
\newlinechar=-1 avoids a space token being added after the definition.

PhO: If the patching is split by (parameter text) and (replacement text), then only # will
have to stay in that list.

PhO: Actually now that we patch \UseHook{cmd/foo/before}, all the tokens there need to
have the right catcodes, so this list now includes all lowercase letters, U and H, the slash,

and whatever characters in the command name. .. sigh. ..

(End definition for __hook_patch_required_catcodes:.)

17

__hook_cmd_if_scanable:NnTF Here we’ll do a quick test if the command being patched can in fact be retokenized with
the specific catcode setting without changing in meaning. The test is straightforward:

1. apply \meaning to the command;

2. split the (prefizes), (parameter text) and (replacement text) and arrange them as
(prefives)\def \kerneltmpDoNotUse(parameter text){(replacement text)}

3. rescan that with the given catcode settings, and do the definition; then finally

4. compare \kerneltmpDoNotUse with the original command.

If both are \ifx-equal, the command can be safely patched.
s \prg_new_protected_conditional:Npnn __hook_cmd_if_scanable:Nn #1 #2 { TF }

346 {

347 \cs_set_eq:NN \kerneltmpDoNotUse \scan_stop:

348 \cs_set_eq:NN __hook_tmp:w \scan_stop:

349 \use X

350 {

351 \cs_set:Npn __hook_tmp:w

352 ####1 \tl_to_str:n { macro: } ####2 -> ####3 \s__hook_mark

353 { ####1 \def \kerneltmpDoNotUse ####2 {####3} }

354 \tl_set:Nx \exp_not:N \1__hook_tmpa_tl

355 { \exp_not:N __hook_tmp:w \token_to_meaning:N #1 \s__hook_mark }
356 }

357 \tl_rescan:nV { #2 __hook_patch_required_catcodes: } \1__hook_tmpa_tl
358 \token_if_eq_meaning:NNTF #1 \kerneltmpDoNotUse

350 { \prg_return_true: }

360 { \prg_return_false: }

361 }

(End definition for __hook_cmd_if_scanable:NnTF.)

_hook patch retokenize:linmn Then, if __hook_cmd_if_scanable:NnTF returned true, we can go on and patch the
command.

52 \cs_new_protected:Npn __hook_patch_retokenize:Nnnn #1 #2 #3 #4
363 {

Start off by making some things \relax to avoid lots of \noexpand below.

364 \cs_set_eq:NN \kerneltmpDoNotUse \scan_stop:

365 \cs_set_eq:NN __hook_tmp:w \scan_stop:
366 \use:x
367 {

Now we’ll define __hook_tmp:w such that it splits the \meaning of the macro (#1) into
its three parts:

####1. (prefives)
####2. (parameter text)

####3. (replacement text)

18

and arrange that a complete definition, then place the before or after hooks around
the (replacement text): accordingly.

368

369

370

379

\cs_set:Npn __hook_tmp:w
####1 \tl_to_str:n { macro: } ####2 -> ####3 \s__hook_mark
{
####1 \def \kerneltmpDoNotUse ####2
{
\str_if_eq:nnT {#3} { before }
{ \token_to_str:N \UseHook { cmd / #2 / #3 } }
####3
\str_if_eq:nnT {#3} { after }
{ \token_to_str:N \UseHook { cmd / #2 / #3 } }

}

Now we just have to get the \meaning of the command being patched and pass it through
the meat grinder above.

\tl_set:Nx \exp_not:N \1__hook_tmpa_tl
{ \exp_not:N __hook_tmp:w \token_to_meaning:N #1 \s__hook_mark }
}

Now rescan with the given catcode settings (overridden by the __hook_patch_-
required_catcodes:), and implicitly (by using the rescanned token list) carry out the
definition from above.

383

\tl_rescan:nV { #4 __hook_patch_required_catcodes: } \1__hook_tmpa_tl

And to close, copy the newly-defined command into the old name and the patching is
finally completed:

\cs_gset_eq:NN #1 \kerneltmpDoNotUse

(End definition for __hook_patch_retokenize:Nnnn.)

4.6 Messages

3

&

6

387

88

389

390

391

392

393

395

396

397

398

399

400

401

402

403

404

405

(
(
(
(
(
(
(
.
(
(
(
(
(
{
\

(latexrelease

\IncludeInRelease{2021/11/15}{wrong-cmd-hook}}

)

latexrelease) {Standardise~generic~hook~names}
latexrelease) \EndIncludeInRelease
latexrelease) \IncludeInRelease{2021/11/15}{wrong-cmd-hook}},
latexrelease) {Standardise~generic~hook~names}
latexrelease) \msg_new:nnnn { hooks } { wrong-cmd-hook }
latexrelease) {
latexrelease) Generic~hook~ ‘cmd/#1/#2°~is~invalid.
latexrelease) % The~hook~should~be~‘cmd/#1/before’~or~‘cmd/#1/after’.
latexrelease) }
latexrelease) {
latexrelease) You~tried~to~add~a~generic~hook~to~command~\iow_char:N \\#1,~but~‘#2’~
latexrelease) is~an~invalid~component.~Only~ ‘before’~or~‘after’~are~allowed.
latexrelease) }
latexrelease) \EndIncludeInRelease
msg_new:nnnn { hooks } { cant-patch }

{

Generic~hooks~cannot~be~added~to~’#1’.
}
{

19

406

4

S

408

409

410

413

414

415

416

417

418

419

4.

i}

0

421

You~tried~to~add~a~hook~to~’#1’,~but~L
patch~the~command~because~it~__hook_u

}
\cs_new:Npn __hook_unpatchable_cases:n #1

{
\str_case:nn {#1}

{
{ undef } { doesn’t~exist }
{ macro } { is~not~a~macro }
{ expl3 } { is~a~private~expl3~mac
{ retok } { can’t~be~retokenized~c
}

}

(latexrelease) \IncludeInRelease{0000/00/00}{1
(latexrelease)
(latexrelease)

aTeX~was~unable~to~
npatchable_cases:n {#2}.

ro }
leanly }
tcmdhooks}),

{The~hook~management~system~for~commands}

The command __hook_cmd_begindocument_code: is used in an internal hook, so we
need to make sure it has a harmless definition after rollback as that will not remove it
from the kernel hook.

422

IS

423

424

(latexrelease) \cs_set_eq:NN __hook_cmd_begin
(latexrelease)
(latexrelease) \EndModuleRelease

\ExplSyntaxOff
(/2ekernel | latexrelease)
(e0=)

Index

document_code: \prg_do_nothing:

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols

\# 341
N/ 199
AN\ 338,397
N 339 o
N} 340

A
\AddToHook 3

B
\begin 65

bool commands:

\bool_if:NTF
\c_false_bool

159, 163, 175, 297
140, 150, 288, 9

\c_true_bool 145, 10
C
char commands:
\char_set_catcode_escape:N 338

20

\char_set_catcode_group_begin:N 339
\char_set_catcode_group_end:N .. 340
\char_set_catcode_parameter:N .. 341
\char_value_catcode:n 292
ommands:

\cs_argument_spec:N 158, 287, 15
\cs_generate_variant:Nn 19
\cs_gset_eq:NN 55, 384
\cs_if_exist:NTF 72, 80

\cs_new:Npn 224, 234,
244, 246, 248, 259, 278, 279, 282, 409
335, 12, 13

\cs_new_eq:NN

\cs_new_protected:Npn
........... 53, 62, 76, 96, 116,
129, 134, 143, 148, 153, 217, 284,
319, 336, 362, 17, 22, 24, 33, 35, 45

............ 204

196, 351, 368

\cs_prefix_spec:N

\cs_set:Npn

\cs_set_eq:NN 168, 169
189, 190, 195, 347, 348, 364, 365, 422

\cs_set_protected:Npn 170
\cs_to_str:N 111, 132, 146, 151
\cs_undefine:N 58
D
Ndef 353, 371
\DisableHook 4
E
\EndIncludeInRelease 388, 400, 30, 44
\EndModuleRelease 424
exp commands:
\exp_after:wN 167, 220, 221, 270
\exp_args:Nc 73, 131, 28, 41
\exp_args:Nf 158
\exp_args:NNc 145, 150
\exp_args:NNo 166
\exp_args:NNV 185
\exp_args:No 166, 185
\exp_args:NV 186
\exp_last_unbraced:Nf 109
\exp_last_unbraced:NNNNo 115
\exp_last_unbraced:NNo 281
\exp_not:N . 107, 109, 110, 111, 181,

196, 203, 204, 208, 212, 228, 269,
275, 293, 302, 354, 355, 380, 381, 12

\exp_not:n 168, 181, 184, 186
214, 273, 303, 305, 306, 308, 309, 12
\ExplSyntax0ff 298, 425
\ExplSyntaxOn 3, 298
F
fi commands:

\Nfi: ... 263, 266, 271, 278, 14
NfoO . .. 10
G

group commands:
\group_begin: 198
\group_end: 202
H

hook commands:
\g_hook_patch_action_list_tl
.................... 90, 123, 6
hook internal commands:
__hook_cmd_begindocument_code:
........... 53, 58, 61, 422, 45, 20
__hook_cmd_if_scanable:Nn 345
__hook_cmd_if_scanable:NnTF
................... 323, 345, 18
__hook_cmd_patch_xparse:Nnn
.................. 127, 148, 148

21

__hook_cmd_try_patch:nn .. 51, 62, 62
__hook_debug:n 47, 48, 64, 68, 18, 27, 38
__hook_def_cmd:w
.......... 189, 195, 220, 12, 13, 13
\g__hook_delayed_patches_prop . ..
.................. 50, 56, 57, 16
__hook_double_hashes:n
............ 185, 246, 246, 280, 14
__hook_double_hashes:w
..... 246, 247, 248, 276, 280, 283, 14
__hook_double_hashes_group:n . ..
.................. 246, 254, 279
__hook_double_hashes_output:N ..
............... 246, 251, 259, 14
__hook_double_hashes_space:w . ..
................. 246, 255, 282
__hook_double_hashes_stop:w .
.................. 246, 262, 278
__hook_exp_not:n 168, 169, 173, 184, 12
__hook_exp_not:NN
......... 190, 196, 212, 214, 12, 12
\c__hook_hash_tl
......... 176, 177, 179, 264, 11, 15
__hook_if_declared:nTF 66
__hook_if_has_hash:n 232
__hook_if_has_hash:nTF . 166, 232, 11
__hook_if_has_hash:w
........... 232, 233, 234, 240, 242
__hook_if_has_hash_check:w .
.................. 232, 239, 244
__hook_if_has_hash_p:n 232
__hook_if_public_command:N . 107, 8
__hook_if_public_command:NTF 76, 86
__hook_if_public_command:w ..
................... 76, 110, 116
__hook_make_prefixes:w
.............. 153, 204, 224, 229
\1__hook_param_text_tl
............. 172, 193, 221, 8, 13
__hook_patch_check:NNnn
............... 76, 80, 83, 86, 96
__hook_patch_cmd_or_delay:Nnn ..
............. 55, 28, 41, 45, 45, 7
__hook_patch_command:Nnn
................ 55, 73, 76, 76, 8
__hook_patch_debug:n 78,79, 82, 85
88, 155, 286, 322, 325, 326, 331, 17, 17
__hook_patch_DeclareRobustCommand:Nnn
................ 125, 129, 129, 9
__hook_patch_DeclareRobustCommand_-
aux:Nnn 131, 134
__hook_patch_expand_redefine:NNnn
..... 140, 145, 150, 153, 153, 288, 15

__hook_patch_newcommand:Nnn
126, 139, 143, 143, 9
\1__hook_patch_num_args_int .
156, 161, 164, 178, 7
\1__hook_patch_prefixes_tl
203, 219, 8,
__hook_patch_required_catcodes:
336, 336, 357, 383,
__hook_patch_retokenize:Nnnn . ..
327, 362, 362, 16
__hook_redefine_with_hooks:Nnnn
153, 208, 217,
\1__hook_replace_text_tl ... 173,
180, 181, 182, 187, 194, 214, 8, 11
__hook_retokenize_patch:Nnn
................... 91, 284, 284
__hook_tmp:w 170, 176, 177,
179, 348, 351, 355, 365, 368, 381, 18
\1__hook_tmpa_tl 163, 165
167, 290, 305, 308, 354, 357, 380, 383
\1__hook_tmpb_t1 295, 306, 309
__hook_try_patch_with_catcodes:Nnnnw
............ 302, 319, 319, 332, 15
__hook_try_put_cmd_hook:n
20, 20, 22, 31, 33
__hook_try_put_cmd_hook:w
20, 23, 24, 34, 35

13

............ 19

18

__hook_unpatchable_cases:n 407, 409
I
if commands:
\if _catcode:w 269, 14
\if _meaning:w 261, 264
NAEX o 14
\IncludeInRelease 386, 389, 419, 20, 31

int commands:

\int_compare:nNnTF 161, 292

\int_new:N 7

\int_set:Nn 156, 199, 342, 343

\int_step_inline:nnn 164, 178

\c_zero_int 161
iow commands:

\iow_char:N 397

\iow_term:n .. 47,49, 65, 69, 18, 27, 38

K
kernel internal commands:
__kernel_cmd_if_xparse:NTF 127, 9
\1__kernel_expl_bool 297

\kerneltmpDoNotUse
335, 347, 353, 358, 364, 371, 384, 18

\makeatletter 293

\makeatother 293
msg commands:
\msg_error:nnnn 100, 314, 42
\msg_new:nnnn 391, 401
N
\NewDocumentCommand 4
\NewHook 3
\NewHookPair 3
\NewModuleRelease 4
\NewReversedHook 4
\notexpanded 14
P
prg commands:
\prg_do_nothing: 190, 304, 422
\prg_new_conditional:Npnn 232

\prg_new_protected_conditional:Npnn

..................... 106, 345
\prg_return_false: 121, 245, 360
\prg_return_true: 120, 245, 359

prop commands:
\prop_gclear:N 57
\prop_gput:Nnn 50
\prop_map_function:NN 56
\prop_new:N 16

quark commands:
\quark_if_recursion_tail_stop_-

do:mn, 321
\quark_new:N 14, 15
\g_recursion_stop 312
\q_recursion_tail 312

quark internal commands:
\q__hook_recursion_stop

247, 248, 257, 278, 14

247, 261, 14

\q__hook_recursion_tail .

S
scan commands:
\scan_stop: 347, 348, 364, 365
scan internal commands:
\s__hook_mark 112, 117, 233
244, 352, 355, 369, 381, 23, 25, 34, 36
str commands:

\c_backslash_str 146, 315
\str_case:nn 411
\str_case:nnTF 39
\str_count:n 158
\str_if_eq:nnTF . 209, 287, 373, 376
\string 65

22

T \tl_clear:N 193

TEX and BTEX 2 commands: \tl_const:Nn 11
\N@ 292 \tl_gset:Nn 123
\@if@DeclareRobustCommand 125 \tl_if_empty:nTF 119, 226, 245
\@if@newcommand 126, 137, 9 \t1l_if_head_is_group:nTF 253
\@kernel@after@begindocument ... 60 \tl_if_head_is_N_type:nTF 250
\AddToHook 1 \tl_if_single_token:nTF 236
\AddToHookNext 1 \tl new:N, 6,8, 9, 10
\apptocmd 2 \tl_put_right No .. 165, 179
\DeclareRobustCommand 9 \tl_rescan:nn 357, 383, 19, 19
Ndef ... 17 \tl_set:Nn 163, 176,
\endlinechar 17 177, 180, 182, 203, 290, 295, 354, 380
\escapechar {2 \tl_set_eq:NN 194
\g@addto@macro 60 \tl_to_str:n 112, 117, 352, 369
:;ZZniﬁé """"""""""" ji \tl_trim_spaces:n 228, 18

.................... token commands:
\pewcommand ...l \token_if_eq_catcode:NNTF 238
\NewCommandCopy 9 \token if ing: NNTF 184. 358
\NewDocumentCommand 2 oxen_it_eq meaning: o » 99
\newlinechar 17 \token_if_macro:NTF N 8%’8
\noexpand 18 \token_to_meaning:N 79,355, 381
\patchemd 2 \token_to_str:N . 78,79, 101, 374, 377
\pretocmd 2 U
\relaxc.iiiiiia.. 18
\robust@command@act 89, 5 \unexpanded 11
\robust@command@chk@safe 136, 9 use commands:
\scantokens 5 \use:n 104, 169, 172
\section 3 200, 206, 267, 300, 321, 349, 366, 14
\ShowCommand 9 \use:nn ... 211

tex commands: \use_i:nnnn 265, 14
\tex_endlinechar:D 342 \use_i_delimit_by_q_recursion_-
\tex_escapechar:D 199 Stopinw ... 328
\tex_gdef:D 189, 13 \use_ii:nn 56, 138
\tex_newlinechar:D 343 \use_ii:nnnn 270
\tex_xdef:D 195, 13 \use_ii_i:nn 210

tl commands: \use_none:n 272, 328
\c_space_tl 282 \UseHook 212, 374, 377, 8

23

	Contents
	1 Introduction
	2 Restrictions and Operational details
	2.1 Patching
	2.1.1 Timing

	2.2 Commands that look ahead

	3 Package Author Interface
	4 The Implementation
	4.1 Execution plan
	4.2 Variables
	4.3 Variants
	4.4 Patching or delaying
	4.5 Patching commands
	4.5.1 Patching by expansion and redefinition
	4.5.2 Patching by retokenization

	4.6 Messages

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	M
	N
	P
	Q
	S
	T
	U

